Historia del Álgebra

Este origen etimológico permitió que, en tiempos pasados, se conociera como álgebra al arte focalizado en la reducción de huesos que estaban dislocados o quebrados. Este significado, de todas maneras, ha caído en desuso.

Hoy entendemos como álgebra al área matemática que se centra en las relaciones, estructuras y cantidades. La disciplina que se conoce como álgebra elemental, en este marco, sirve para llevar a cabo operaciones aritméticas (suma, resta, multiplicación, división) pero que, a diferencia de la aritmética, se vale de símbolos (a, x, y) en lugar de utilizar números. Esto permite formular leyes generales y hacer referencia a números desconocidos (incógnitas), lo que posibilita el desarrollo de ecuaciones y el análisis correspondiente a su resolución.

El álgebra elemental postula distintas leyes que permiten conocer las diferentes propiedades que poseen las operaciones aritméticas. Por ejemplo, la adición (a + b) es conmutativa (a + b = b + a), asociativa, tiene una operación inversa (la sustracción) y posee un elemento neutro (0).

Algunas de estas propiedades son compartidas por distintas operaciones; la multiplicación, por ejemplo, también es conmutativa y asociativa.

Se conoce como Teorema Fundamental del Álgebra, por otra parte, a un postulado según el cual, en una variable no constante donde hay coeficientes complejos, un polinomio posee tantas raíces como marca su grado, debido a que las raíces se tienen en cuenta con sus multiplicidades. Esto supone que el cuerpo de los números complejos es cerrado para las operaciones del álgebra.

TEORÍA BÁSICA DE ALGEBRA.

Contenidos: -

Conceptos algebraicos básicos-

Operaciones con expresiones algebraicas-

Valoración de expresiones algebraicas-

Notación algebraica-

Reducción de términos semejantes-

Productos notables

TÉRMINO ALGEBRAICO

Producto de un número por una o varias letras.

Consta de: a) signo b) coeficiente numérico c) factor literal

Ejemplo:

-3a

GRADO DE UN TÉRMINO

El término 3x

3 tiene grado 3 (por el exponente de x)

PRODUCTOS NOTABLES

Sabemos que se llama producto al resultado de una multiplicación. También sabemos que los valores que se multiplican se llaman factores.

Se llama productos notables a ciertas expresiones algebraicas que se encuentran frecuentemente y que es preciso saber factorizarlas a simple vista; es decir, sin necesidad de hacerlo paso por paso.

Se les llama productos notables (también productos especiales) precisamente porque son muy utilizados en los ejercicios.

A continuación veremos algunas expresiones algebraicas y del lado derecho de la igualdad se muestra la forma de factor izarlas (mostrada como un producto notable).


lunes, 3 de junio de 2019

Evaluación Kahoot

Espacio para rendir la evaluaciòn Kahoot PIN :0640211

(Haga click en la imagen para poder rendir la evaluación)




Evaluación